organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-Methyl-4-[(4-nitrophenyl)diazenyl]phenol dimethylformamide solvate

Başak Koşar,^a* Çigdem Albayrak,^b Ismail Gümrükçüoglu^b and Orhan Büyükgüngör^a

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey Correspondence e-mail: bkosar@omu.edu.tr

Received 12 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study: T = 293 K: mean σ (C–C) = 0.005 Å: R factor = 0.052; wR factor = 0.142; data-to-parameter ratio = 13.2.

The title compound, C₁₃H₁₁N₃O₃·C₃H₇NO, displays an intermolecular $O-H \cdots O$ hydrogen bond between the hydroxyl group and the carbonyl O atom of the solvent molecule. The configuration of the N=N double bond is trans and the dihedral angle between the two aromatic rings is 24.85 (6)°.

Related literature

For related compounds, see: Koşar et al. (2004a,b).

Experimental

Crystal data

V = 3316.1 (4) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.50 \times 0.40 \times 0.09 \text{ mm}$

Data collection

STOE IPDS 2 diffractometer Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.473, \ T_{\max} = 0.877$

28423 measured reflections 2925 independent reflections 1177 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.134$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	2 restraints
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 0.84	$\Delta \rho_{\rm max} = 0.17 \text{ e} \text{ Å}^{-3}$
2925 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
221 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O4	0.82	1.84	2.595 (3)	153

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2612).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Koşar, B., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004a). Acta Cryst. E60, o190-o192.

Koşar, B., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004b). Acta Crvst. E60. 0246-0247.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, 04772 [doi:10.1107/S1600536807059454]

(E)-2-Methyl-4-[(4-nitrophenyl)diazenyl]phenol dimethylformamide solvate

B. Kosar, Ç. Albayrak, I. Gümrükçüoglu and O. Büyükgüngör

Comment

Azo compounds are used as dyes in textile, printing, paper manufacturing, pharmaceutial and food industries. All of them contain at least one azo group, which links two sp^2 -hybridized C atoms. In our ongoing work, these C atoms are part of aromatic systems.

Experimental

A mixture of 4-nitroaniline (4.47 g, 32.4 mmol), water (50 ml) and concentrated hydrochloric acid (8.14 ml, 97.2 mmol) was stirred until a clear solution was obtained. This solution was cooled to 273–278 K and a solution of sodium nitrite (3,13 g, 45.36 mmol) in water was added dropwise while the temperature was maintained below 278 K. The resulting mixture was stirred for 30 min in an ice bath. An *o*-Cresol (3.5 g, 32.4 mmol) solution (pH 9) was gradually added to a cooled solution of 4-nitrobenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 273–278 K for 60 min in ice bath. The product was recrystallized from ethyl alcohol to obtain solid (*E*)-2-methyl-4-[(4-nitrophenyl)diazenyl]phenol. Crystals were obtained by slow evaporation from DMF (yield %75, m.p. 480–482 K).

Refinement

All H atoms were positioned geometrically with C—H ranging from 0.93 to 0.96Å and O—H = 0.82Å and U(H)= $1.2U_{eq}(C,O)$ and refined using a riding model.

Figures

Fig. 1. A view of the molecule, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

(E)-2-Methyl-4-[(4-nitrophenyl)diazenyl]phenol dimethylformamide solvate

Crystal data

$C_{13}H_{11}N_3O_3 \cdot C_3H_7NO$
$M_r = 330.34$
Orthorhombic, Pbca
<i>a</i> = 7.1951 (6) Å
<i>b</i> = 11.4501 (7) Å
c = 40.252 (2) Å

 $D_x = 1.323 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1369 reflections $\theta = 1.8-24.9^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $V = 3316.1 (4) Å^3$ Z = 8 $F_{000} = 1392$

Data collection

STOE IPDS 2 diffractometer	2925 independent reflections
Radiation source: fine-focus sealed tube	1177 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.134$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 25.1^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scan	$h = -8 \rightarrow 8$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$k = -13 \rightarrow 13$
$T_{\min} = 0.473, \ T_{\max} = 0.877$	$l = -45 \rightarrow 47$
28423 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0656P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.84	$(\Delta/\sigma)_{\rm max} < 0.001$
2925 reflections	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
221 parameters	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0035 (5)

Extinction coefficient: 0.0035 (5) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Plate, red $0.50 \times 0.40 \times 0.09 \text{ mm}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5794 (4)	0.5894 (3)	0.35445 (8)	0.0724 (9)
C2	0.5428 (4)	0.7036 (2)	0.36521 (8)	0.0720 (8)
C3	0.5668 (4)	0.7278 (3)	0.39844 (8)	0.0739 (9)
Н3	0.5447	0.8031	0.4061	0.089*
C4	0.6239 (4)	0.6415 (3)	0.42095 (8)	0.0724 (8)
C5	0.6587 (4)	0.5303 (3)	0.40948 (8)	0.0795 (9)
Н5	0.6969	0.4726	0.4242	0.095*
C6	0.6374 (5)	0.5044 (3)	0.37665 (8)	0.0794 (9)
Н6	0.6619	0.4292	0.3691	0.095*
C7	0.4750 (5)	0.7943 (2)	0.34091 (8)	0.0906 (11)
H7A	0.3609	0.7683	0.3310	0.136*
H7B	0.5668	0.8057	0.3239	0.136*
H7C	0.4540	0.8666	0.3524	0.136*
C8	0.6317 (4)	0.7776 (3)	0.49993 (8)	0.0721 (8)
C9	0.6518 (5)	0.8906 (3)	0.51015 (8)	0.0849 (10)
Н9	0.6685	0.9491	0.4944	0.102*
C10	0.6479 (5)	0.9190 (3)	0.54313 (8)	0.0800 (9)
H10	0.6615	0.9963	0.5498	0.096*
C11	0.6239 (4)	0.8322 (3)	0.56618 (7)	0.0700 (8)
C12	0.6051 (4)	0.7175 (3)	0.55705 (9)	0.0807 (9)
H12	0.5899	0.6594	0.5730	0.097*
C13	0.6093 (4)	0.6899 (3)	0.52346 (9)	0.0798 (9)
H13	0.5972	0.6126	0.5167	0.096*
C14	0.5340 (6)	0.2559 (4)	0.30409 (9)	0.0985 (11)
H14	0.6045	0.2312	0.3221	0.118*
C15	0.3192 (7)	0.2085 (5)	0.26042 (11)	0.1502 (18)
H15A	0.3223	0.2916	0.2573	0.225*
H15B	0.1943	0.1843	0.2652	0.225*
H15C	0.3615	0.1705	0.2405	0.225*
C16	0.4454 (7)	0.0558 (3)	0.29793 (13)	0.1434 (17)
H16A	0.5206	0.0489	0.3175	0.215*
H16B	0.4983	0.0095	0.2804	0.215*
H16C	0.3219	0.0287	0.3026	0.215*
N1	0.6423 (4)	0.6580 (2)	0.45645 (6)	0.0793 (7)
N2	0.6258 (4)	0.7616 (2)	0.46413 (6)	0.0795 (8)
N3	0.6146 (4)	0.8638 (3)	0.60128 (8)	0.0869 (8)
N4	0.4384 (4)	0.1770 (2)	0.28767 (7)	0.0891 (8)
O1	0.5537 (3)	0.56890 (17)	0.32164 (5)	0.0928 (7)
H1	0.5784	0.5005	0.3175	0.139*
O2	0.6458 (4)	0.9649 (2)	0.60921 (6)	0.1128 (9)
O3	0.5750 (4)	0.7869 (2)	0.62114 (6)	0.1149 (9)
O4	0.5362 (5)	0.3596 (2)	0.29714 (7)	0.1331 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.074 (2)	0.080 (2)	0.063 (2)	-0.0053 (16)	0.0035 (16)	-0.0091 (16)
C2	0.075 (2)	0.0710 (18)	0.070 (2)	-0.0002 (15)	0.0017 (17)	-0.0048 (16)
C3	0.067 (2)	0.0716 (18)	0.083 (3)	-0.0058 (16)	0.0047 (17)	-0.0120 (17)
C4	0.061 (2)	0.0793 (19)	0.0768 (15)	-0.0057 (16)	0.0004 (17)	0.0016 (17)
C5	0.084 (2)	0.076 (2)	0.079 (3)	0.0004 (16)	0.0020 (19)	0.0042 (17)
C6	0.090 (2)	0.0761 (19)	0.072 (2)	-0.0020 (18)	0.0029 (19)	-0.0085 (18)
C7	0.115 (3)	0.0817 (19)	0.076 (2)	0.0060 (19)	-0.007 (2)	0.0028 (17)
C8	0.064 (2)	0.080 (2)	0.0721 (14)	0.0041 (16)	-0.0040 (17)	0.0034 (17)
C9	0.097 (3)	0.082 (2)	0.076 (3)	0.0024 (19)	-0.0035 (19)	0.0017 (17)
C10	0.094 (3)	0.0737 (19)	0.072 (2)	-0.0006 (17)	0.000 (2)	-0.0055 (17)
C11	0.069 (2)	0.082 (2)	0.059 (2)	0.0024 (16)	0.0004 (16)	-0.0065 (17)
C12	0.082 (3)	0.084 (2)	0.077 (3)	0.0038 (18)	-0.0007 (18)	0.0031 (17)
C13	0.079 (3)	0.0688 (19)	0.092 (3)	0.0039 (16)	-0.0053 (19)	-0.0145 (19)
C14	0.114 (3)	0.109 (3)	0.072 (3)	0.002 (3)	0.007 (2)	-0.004 (2)
C15	0.142 (4)	0.208 (5)	0.101 (4)	0.022 (4)	-0.030 (3)	-0.013 (3)
C16	0.164 (5)	0.088 (3)	0.178 (5)	-0.016 (3)	0.020 (4)	0.008 (3)
N1	0.0747 (18)	0.0811 (17)	0.0820 (15)	-0.0049 (14)	-0.0012 (15)	-0.0062 (14)
N2	0.089 (2)	0.0741 (16)	0.0752 (14)	0.0021 (14)	0.0016 (15)	-0.0015 (13)
N3	0.074 (2)	0.111 (2)	0.076 (2)	0.0067 (17)	0.0012 (16)	-0.0116 (19)
N4	0.095 (2)	0.0920 (19)	0.080 (2)	0.0020 (17)	-0.0018 (17)	-0.0043 (16)
01	0.125 (2)	0.0827 (13)	0.0706 (16)	0.0053 (13)	-0.0023 (13)	-0.0112 (11)
O2	0.140 (2)	0.1082 (18)	0.0901 (19)	0.0084 (16)	-0.0070 (16)	-0.0325 (14)
03	0.135 (2)	0.140 (2)	0.0699 (17)	-0.0055 (18)	0.0115 (15)	0.0098 (15)
O4	0.201 (3)	0.0948 (17)	0.104 (2)	-0.0107 (18)	0.011 (2)	-0.0246 (15)
Geometric p	arameters (Å, °)					
C101		1.354 (3)	C10–	-H10	0.93	00
C1—C6		1.386 (4)	C11-	-C12	1.37	0 (4)
C1—C2		1.402 (4)	C11–	-N3	1.46	0 (4)
С2—С3		1.377 (4)	C12-	C13	1.38	9 (4)
$C^2 - C^7$		1 508 (4)	C12_	_H12	0.03	00

C2—C3	1.377 (4)	C12—C13	1.389 (4)
С2—С7	1.508 (4)	C12—H12	0.9300
C3—C4	1.402 (4)	С13—Н13	0.9300
С3—Н3	0.9300	C14—O4	1.219 (4)
C4—C5	1.377 (4)	C14—N4	1.314 (4)
C4—N1	1.447 (4)	C14—H14	0.9300
C5—C6	1.363 (4)	C15—N4	1.438 (5)
С5—Н5	0.9300	C15—H15A	0.9600
С6—Н6	0.9300	C15—H15B	0.9600
С7—Н7А	0.9600	C15—H15C	0.9600
С7—Н7В	0.9600	C16—N4	1.449 (4)
С7—Н7С	0.9600	C16—H16A	0.9600
С8—С9	1.365 (4)	C16—H16B	0.9600
C8—C13	1.390 (4)	C16—H16C	0.9600
C8—N2	1.453 (4)	N1—N2	1.231 (3)

C9—C10	1.367 (4)	N3—O2	1.222 (3)
С9—Н9	0.9300	N3—O3	1.222 (3)
C10—C11	1.371 (4)	O1—H1	0.8200
O1—C1—C6	123.2 (3)	C12—C11—C10	121.8 (3)
O1—C1—C2	116.0 (3)	C12—C11—N3	119.5 (3)
C6—C1—C2	120.8 (3)	C10-C11-N3	118.7 (3)
C3—C2—C1	117.6 (3)	C11—C12—C13	118.5 (3)
C3—C2—C7	122.2 (3)	C11—C12—H12	120.8
C1—C2—C7	120.2 (3)	С13—С12—Н12	120.8
C2—C3—C4	121.6 (3)	C12—C13—C8	120.1 (3)
С2—С3—Н3	119.2	С12—С13—Н13	119.9
C4—C3—H3	119.2	C8—C13—H13	119.9
$C_{5}-C_{4}-C_{3}$	119.2 (3)	04—C14—N4	124 1 (4)
C5-C4-N1	1158(3)	04—C14—H14	1179
$C_3 - C_4 - N_1$	125.0(3)	N4-C14-H14	117.9
C6-C5-C4	120.4(3)	N4—C15—H15A	109.5
C6_C5_H5	119.8	N4_C15_H15B	109.5
C4-C5-H5	119.8	H15A_C15_H15B	109.5
$C_{2} = C_{2} = C_{1}$	120.4 (3)	N4_C15_H15C	109.5
C5 C6 H6	110.9		109.5
C_{1}	119.0	H15P C15 H15C	109.5
$C_1 = C_0 = H_0$	119.0	N4 C16 U16A	109.5
$C_2 = C_1 = \Pi/A$	109.5	N4 C16 U16D	109.5
	109.5		109.5
H/A - C - H/B	109.5		109.5
C2—C/—H/C	109.5	N4—C16—H16C	109.5
H/A—C/—H/C	109.5	H16A—C16—H16C	109.5
H/B—C/—H/C	109.5	H16B—C16—H16C	109.5
C9—C8—C13	119.4 (3)	N2—N1—C4	111.4 (3)
C9—C8—N2	114.9 (3)	N1—N2—C8	111.6 (2)
C13—C8—N2	125.5 (3)	O2—N3—O3	123.7 (3)
C8—C9—C10	121.1 (3)	O2—N3—C11	118.6 (3)
С8—С9—Н9	119.5	O3—N3—C11	117.7 (3)
С10—С9—Н9	119.5	C14—N4—C15	121.6 (3)
C9—C10—C11	119.1 (3)	C14—N4—C16	119.8 (4)
C9—C10—H10	120.4	C15—N4—C16	118.6 (4)
C11—C10—H10	120.4	C1—O1—H1	109.5
O1—C1—C2—C3	179.8 (3)	C9—C10—C11—N3	-178.3 (3)
C6—C1—C2—C3	0.1 (5)	C10-C11-C12-C13	-0.6 (5)
O1—C1—C2—C7	1.3 (4)	N3-C11-C12-C13	178.3 (3)
C6—C1—C2—C7	-178.4 (3)	C11—C12—C13—C8	-0.1 (5)
C1—C2—C3—C4	-0.7 (4)	C9—C8—C13—C12	0.9 (5)
C7—C2—C3—C4	177.8 (3)	N2-C8-C13-C12	-175.6 (3)
C2—C3—C4—C5	0.7 (4)	C5-C4-N1-N2	173.7 (3)
C2—C3—C4—N1	-176.3 (3)	C3—C4—N1—N2	-9.1 (4)
C3—C4—C5—C6	-0.2 (5)	C4—N1—N2—C8	176.1 (2)
N1—C4—C5—C6	177.2 (3)	C9—C8—N2—N1	167.4 (3)
C4—C5—C6—C1	-0.4 (5)	C13—C8—N2—N1	-16.0 (4)
O1—C1—C6—C5	-179.3 (3)	C12—C11—N3—O2	174.4 (3)
	× /		

supplementary materials

C2-C1-C6-C5 C13-C8-C9-C10 N2-C8-C9-C10 C8-C9-C10-C11 C9-C10-C11-C12	0.4 (5) -0.9 (5) 175.9 (3) 0.2 (5) 0.5 (5)	C10 C12 C10 O4- O4-	C11N3O2 C11N3O3 C11N3O3 C14N4C15 C14N4C16		-6.7 (4 -5.9 (4 173.0 (-2.9 (6 179.9 (4) 4) (3) 5) (4)
Hydrogen-bond geometry (Å, °)	D	—Н	H <i>4</i>	DA		D—H…A
01—H1···O4	0.	82	1.84	2.595 (3)		153

Fig. 1